By bl 3 el L)l &y 5ei!
République Algérienne Démocratique et Populaire

A Eodly QU1 M 505

Ministére de I’ Enseignement Supérieur et de la
Recherche Scientifique

\e‘-“'e en Y/
Q‘,Qb‘ a”‘%%
)
g Bl g VALLEY
W _Sidi Bel Abbes G SOLUTIONS
PO TS, T N S
by g
- 9 . ,
Ecole supérieur en informatique L entre;\);'lfle deS dle‘i’floppement
Sidi Bel Abbés 8 mai 1945 alley oolutions

Mémoire de fin d’étude

En vue de I'obtention du diplome : Ingénieur
Filiere : Informatique

Spécialité : Systéeme d’information et web (SIW)

Theéme

DYNAMIC PRICING IN DOD APPLICATION

P | Encadreur :
uteur . Dr. Mohammed KAZ1 TANI
MOKHFI OMmAR

M. Ilyas HANAGRIA

15 septembre 2020

Acknowledgement

In recognition, I would like to express my sincere thanks to everyone who
contributed, from near and far, the smooth running of my end-of-study internship
and the development of this modest work. My sincere gratitude to my thesis
supervisor Mr Mohammed Yassine Kazi Tani for the quality of his teaching,
his advice and indisputable interest he took in this work, I also thank him for his
attention and patience.
I would like to thank my internship tutor Mr Hanagria Ilyes as well the entire
Ouigo team at Valley Solutions, Algeria for their patience, advice, guidance and
interest they have shown in my achievements. I would also like to thank "ALL"
the gentlemen and ladies, my teachers who taught me during five years of training
in IT for their valuable advice and guidance. My thanks also go to the members of
the jury for accepting to evaluate my work. Without forgetting to thank my
friends and colleagues (at ESI-SBA or in the Virtual world "Internet") which, all
in different ways, contributed to what I may lead to the realization of this thesis.
Finally, a warm thanks to my family (my parents and sisters, our brothers) for the

support and encouragement they have brought me throughout my work.

i

Abstract.
Driver On Demand (DOD) platforms are a new option for passengers that took
place in Algeria around 2017, making it a new field to explore. Despite the fact that
they encounter a large number of users, Some features, that really make a difference
from one platform to another, are still missing. One of the characteristics is the
pricing strategy, and increasing availability in non crowded zones. The objective of
this graduation project is to implement a full pricing system, which can improve
the marketing strategies, and gain clients satisfaction, and as a result enhance the
platform’s income. For that purpose, we have proposed and implemented some
systems. The first is the surge pricing system that calculates a multiplication factor
based on drivers availability, and passengers requests in a certain zone. The second
one is the prediction system that predicts duration of the ride which will be the main
factor in price strategy. In addition to those systems, all configuration is controlled
by the marketing team through a control panel.

We aim to achieve the following objectives during our internship :
- Implement an interactive system between marketing and pricing.
- Propose a surge pricing architecture.
- Propose and implement a duration prediction system that replaces Google maps.

- Set up a ready to deploy images of the proposed solutions.

il

Resume.
Les plateformes Voiture de transport avec chauffeur (VTC) sont une nouvelle option
pour les passagers qui a eu lieu en Algérie vers 2017, ce qui en fait un nouveau
domaine a explorer. Malgré le fait qu’ils rencontrent un grand nombre d’utilisateurs,
certaines fonctionnalités, qui font vraiment la différence d’une plateforme a ’autre,
sont toujours manquante. L’une des caractéristiques est la stratégie de tarification
et augmentation de la disponibilité dans les zones non bondées. L’objectif de ce
projet de fin d’études est de mettre en ceuvre un systéme de tarification complet,
qui peut améliorer les stratégies de marketing et obtenir la satisfaction des clients,
et par conséquent augmenter les revenus de la plate-forme. Pour cela, nous avons
proposé et implémenté quelque systémes. Le premier est le systéme de tarification
des surtensions qui calcule une multiplication en fonction de la disponibilité des
conducteurs et les demandes des passagers dans une certaine zone. Le second est le
systéme de prédiction qui prédit la durée du trajet qui sera le principal facteur dans
la stratégie de prix. En plus de ces systémes, toute la configuration est contrdlée
par ’équipe marketing a travers un panneau de controle.

Nous visons a atteindre les objectifs suivants lors de notre stage:
- Mettre en place un systéme interactif entre marketing et tarification
- Proposer une architecture de tarification des surtensions
- Proposer et mettre en ceuvre un systéme de prédiction de durée qui remplace
Google maps

- Mettre en place des images prétes a déployer des solutions proposées

v

Contents

1 General Introduction

2

1.1 Imtroduction
1.1.1 Context
1.1.2 Problematic
1.1.3 Goal o

1.2 VALLEY SOLUTIONS and NEEXIUM
1.2.1 NEEXIUM Digital
1.2.2 VALLEY SOLUTIONS
1.2.3 Presentation of Ouigo

Market situation in Algeria of Driver On Demand services

Existing Driver On Demand services in Algeria
1.3 Organization of the report
Dynamic pricing in Driver On Demand application
2.1 Introduction
2.2 Basicconcepts.
221 SUrge. ..o
222 Coupon
2.2.3 Prediction oo Lo
2.2.4 Competition Monitoring
2.3 Dynamic pricing
2.3.1 Interactive system

CONTENTS

2.3.2 Coupons system
2.3.3 Surge Pricing system
2.3.4 Prediction system
24 Conclusion

3 Analysis of the current situation

3.1 Imtroduction
3.2 Existing project
3.2.1 Web application

Use case diagram

MongoDB Database

3.2.2 Mobile application

3.3 Problems with the existing project
3.3.1 Architecture
3.3.2 Code structure
3.3.3 Mapsservice

3.4 Tasks that should bedone
3.5 Conclusion

4.2.3

Use-case of the price prediction system

Sequence diagram

4 Analysis and conception of the system

4.1 Introduction
4.2 Analysisofneeds
4.2.1 Functionalities oL

4.2.2 Use-case diagram L.
Use-case of the basic pricing configuration system

Use-case of the discounts system

Use-case of the surge pricing system

Sequence diagram for pricing configuration

Sequence diagram of ride confirmation

Sequence diagram for pricing estimation

16
16
17
17
18
20
21
22
22
22
22
23
23

25
25
26
26
26
26
28
29
31
32
32
33
34

vi

CONTENTS

4.3 Conception 35

4.3.1 Architectural conception 35

Architecture based on Micro-services model 35

REST 36

4.3.2 Classes diagram o 37

4.3.3 Activity diagramo 39

4.4 Conclusion L 40
5 Ouigo Pricing: A system that manages the dynamic pricing for

Ouigo DOD application 42

5.1 Introduction: Presentation of the system 42

5.2 Architecture of the system 0L 43

5.2.1 Maps micro-service 44

APIs Benchmark 44

5.2.2 Pricing micro-service 44

Basic pricingo 44

Price prediction L 45

Surge pricingo 45

Applying coupon 45

5.2.3 Web applicationo 46

Back-endo 46

Dashboard 46

5.3 UL/UX . . o 46

54 Conclusion 51

6 Experimentation 53

6.1 Introduction 54

6.2 Development environment 54

6.2.1 Languages and frameworks 54

NodeJS o 54

Angularo 55

Python. 55

vii

CONTENTS

6.2.2 Data Base Management System 55
MongoDBo 95

Redis. o 56

6.23 IDEs 56

Visual Studio Code 56

PyCharm 56

6.3 Collaboration environment 56
6.3.1 GitLab 57

6.3.2 Trello o7

6.3.3 Slack 57

6.4 Deployment environment Lo 58
6.4.1 Docker 58

6.5 Resultsanalysis o o 58
6.5.1 Basicprice. 58

6.5.2 Surge price 59

6.5.3 Price prediction Lo 59

6.6 Conclusion 60
General Conclusion 61
Bibliography 62

viii

List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4

Organization chart of NEEXIUM Digital D
Organization chart of Valley Solutions 6
Deployment diagram of the existing Ouigo system 17
Web interfaces of the existing Ouigo application 18
Use case diagram of the existing Ouigo web application 19
MongoDb documents of the existing Ouigo application 20
Existing mobile application functionalities 21
Use case diagram of the basic pricing configuration system 27
Use case diagram of the discounts system 28
Use case diagram of the surge pricing system 30
Use case diagram of the price prediction system 31
Sequence diagram of pricing configuration process 32
Sequence diagram of the ride confirmation 33
Sequence diagram of the price estimation process 34
Classes diagram of the dynamic pricing system 38
Activity diagram of the dynamic pricing system 39
Architecture of dynamic pricing system of Ouigo 43
Web UI - Managing filters 46
Web UI - Managing categories 47
Web UI - Managing periods 48

X

LIST OF FIGURES

5.5 Web Ul - Managing discounts 49
5.6 Web UI - Basic pricing configuration 50
5.7 Web UI - Surge configuration 51
5.8 Web UI - Price prediction configuration 51
6.1 Trello board - Ouigo Pricing tasks 57
6.2 Learning curves of Random Forest Regressor 60
6.3 Learning curves of XGBoost Regressor 60

List of Tables

1.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

6.1

Comparison between Driver On Demand services in Algeria 7
Priorities of the functional specifications 26
Description of the use case "Configure Pricing" 27
Description of the use case "Get prices of competitors" 28
Description of the use case "Apply Coupon" 29
Description of the use case "Get Coupons and invested money" . . . 29
Description of the use case "Update surge configuration" 30
Description of the use case "Get surge" 31

Comparative table between regression algorithms for price prediction

x1

Acronyms

DOD: Driver On Demand
DZD: Algerian Dinar

xii

Chapter

General Introduction

Sommaire
1.1 Introduction00, 2
1.1.1 Context 3
1.1.2 Problematic o 3
1.1.3 Goalo 4
1.2 VALLEY SOLUTIONS and NEEXIUM 4
1.2.1 NEEXIUM Digital 4
1.2.2 VALLEY SOLUTIONS 5
1.2.3 Presentation of Ouigo 6
1.3 Organization of thereport 7

1.1 Introduction

Dynamic pricing is a system that helps seller, or service provider to change price
over time based on some factors set up by the seller himself such as time, distance,
basic price, service request and provider availability, etc. While offering the client

an exact prediction of the price [1].

Chapter 1 : General Introduction

Predicting a price with such factors that makes it change between a second and
another was impossible at some time, and even after it became possible, predicting
with such precision was quite a hard task. When it comes to market each error in
prediction is money, and while the error is big and as a consequence money lost by
the seller or the client is big, such system should be avoided.

Dynamic pricing is found in every large market nowadays, every take it or leave
it market where clients numbers are so high and demand is so high that the only
care is making money, in taxi fares, online stores, hotels, etc. An example of that
is amazon store, or any similar store, where you can see clearly that each product’s
price changes continuously with variable discounts between clients, countries and
periods, and in such a business there are always clients looking for products so the
only care is variations of prices based on what satisfies clients and what brings more

money to the business itself.

1.1.1 Context

Valley solutions for its new startup "Ouigo" trying to conquer the Driver On Demand
(DOD) market in Algeria based on many strategies, and take the lead in concurrence
with many existing services like "Yassir", "Heetch" and "Careem", etc. One of the
strategies is the implementation of a dynamic pricing system that attracts drivers
by providing a better income and wins over clients by providing a better service and
reasonable prices while keeping the business standing.

For the system to work properly, it must be monitored by marketing team when

it comes to their strategies and pricing of concurrence.

1.1.2 Problematic

For the dynamic pricing system itself, it was first implemented in the Driver On
Demand (DOD) market by the first service provider "Uber" and it consists of many
sub-systems, like for example surge pricing which is changing prices based on drivers
availability and passengers requests in an area. Due to lack of control in the system,

the fare price reached up to 50 times the normal price at disasters surge times and

Chapter 1 : General Introduction

it also reaches easily 5-8 times the normal price in normal surge times.

The pricing system requires months of data for the prediction part which is a
problem for a new startup, and also requires the use of maps service in its inputs
which is a critical cost for the company.

The precision of prediction is very important when it comes to DOD, for exam-
ple, if there is an error of 20% and the fare price is about 500dzd, the result would be
that either the driver loses 50dzd from its daily income, or client pays extra 50dzd
for a ride. On the other hand, while there are cloud services specialized for this, the

cost of the service is still critical for the startup.

1.1.3 Goal

The goal of this work is the implementation of a dynamic pricing system with a fare
prediction subsystem while giving the marketing team full control. the production
part of the system must be deployed to be used in the application. It is also respon-
sible for building a working system that benefits both the startup and their clients,
while lowering the flows that can be used by corruption, and also lowering the cost
as much as possible by a well done bench-marking and studies of possible solutions.

The main goal is building a prediction model based on forecast algorithm.

1.2 VALLEY SOLUTIONS and NEEXIUM

1.2.1 NEEXIUM Digital

NEEXIUM!, situated in Paris, France, is an expert company in digital engineering
consulting. It assists its customers on a long term basis for the definition and
implementation of digital solutions for small and medium sized companies, industries
and organizations.

Figure (Fig. 3.5a) represents different stakeholders and structure of NEEXIUM

Digital organization.

Thttps:/ /www.neexium.com/

Chapter 1 : General Introduction

Neexium Organigramme

Présidente
Siham
BOUCHAM

Service juridique Externe

Expert Comptable
Noura AIMEUR

Nail Touati Adam NAIM
Business Manager Sales Manager

Support technique & IT
Gestion site internet Service RH
Externe

Comptable
Simon-Pierre
CHARPENTIER

Externe

Service Paie
Patricia RIGUET

commerciale Externe

. . Consultants en clientéles
SR RO EE e Dorine BOULENGER -
Commercial

Figure 1.1: Organization chart of NEEXTUM Digital

1.2.2 VALLEY SOLUTIONS

VALLEY SOLUTIONS, situated in Algiers, Algeria, is a reference I'T company,
leader in the development of measurement and specificity of technological solutions.
Figure (Fig. 3.5b) represents different stakeholders and structure of Valley Solutions

organization.

Chapter 1 : General Introduction

Valley Solutions Organigramme

Gérants
Mourad MECHAKRA
&

Service juridique Externe Rachid LALMAS

Expert Comptable
Externe
Mme Imene HAOUARI Mme Abir Zohra BOUCHAIB M. HAMLAOUI

Operational & Marketing/ Responsable des ressources

Manager Humaines

M. llyas HANAGRIA
IT Manager

M. SARRA DJEMA
Assistante RH

Consultants en Marketing
Digital

Consultants IT

Figure 1.2: Organization chart of Valley Solutions

1.2.3 Presentation of Ouigo

OUIGO is a new upcoming startup in the DOD market developed by Valley Solu-
tions. It is an innovative transportation service that we can use with our smartphone
anywhere and anytime allowing everyone to reserve a driver and travel in complete

safety.

Market situation in Algeria of Driver On Demand services

In Algeria, the concept of requesting a private driver using a smartphone and geo-
localization started in 2017 and attracted a lot of citizens that lived the experience
with the help of many service providers.

In 2018, this market attracted many investors and business-men that opened
the doors for 10 more applications to exist.

Driver On Demand (DOD) services came with new features that transport
service was lacking, and that includes the availability, providing the cost of fares,

private drivers, choosing the desired pickup and destination, etc.

Chapter 1 : General Introduction

Existing Driver On Demand services in Algeria

Yassir, TemTem, coursa, Amir and Tymo or even Wassalni et Lahagni all seek
being the Algerian "Uber" and dominate the market, and each one of these service
providers offering their own features, and their own methods to distinct themselves
from the others.

Having different clients, some satisfied and some not, the only winner in this is

the driver having a variation of choices.

Application | Strengths Weaknesses

Large number of drivers
' Application bugs
YAssir Covers 12 wilayas
Non competitive prices
Large amount of data

TemTem Referrals system Highest prices in market

Competitive prices)) _
Coursa Available only in Algiers
Recommended by influencers

Amir Negative drivers feedback Available only in Oran
Exists in many countries

Careem
Daily offers
Exists in France and Algeria

Heetch

Competitive prices

Table 1.1: Comparison between Driver On Demand services in Algeria

1.3 Organization of the report

This report consists of a total of 6 chapters. Next chapter (chapter 2) defines the
basic concepts of dynamic pricing in DOD applications, and also different approaches
of fare prediction: the machine learning approach based on forecast algorithms, and
the amazon forecasts service.

Chapter 3 is a study on the existing solution, and the already developed features,
including the android application and admin dashboard.

Chapter 4 consists of an analysis and conception of our system with different

7

Chapter 1 : General Introduction

diagrams (Use case, Sequence, Classes, Activity).
Chapter 5 introduces the implemented system with its architecture and UI/UX.
Chapter 6 presents the experimentation and the results acquired from the sys-
tem and also the development environment to end it with a final chapter that consists

of a conclusion and future perspectives.

Chapter

Dynamic pricing in Driver On Demand

application
Sommaire
2.1 Imtroduction 11
2.2 Basicconcepts e 12
221 8urge ... 12
222 Coupon 12
2.2.3 Prediction 12
2.2.4 Competition Monitoring 13
2.3 Dynamic pricing 0 e e e e e 13
2.3.1 Interactive system 13
2.3.2 Coupons systemo 13
2.3.3 Surge Pricing systemo 14
2.3.4 Prediction systemo 14
24 Conclusion. o L e 14

10

Chapter 2 : Dynamic pricing in Driver On Demand application

2.1 Introduction

Pricing has a huge importance in today’s market, and a huge impact on the company
itself due to the change in market flow, so clients cannot be won without offering the
perfect cost of a service. The pricing strategy is a critical process because People’s
behaviors towards money is the same as their behaviors towards their health. As a
result of them giving such importance to prices, offering a service to an audience is
all based on their acceptance and satisfaction toward the cost of the service.

Due to the continues change of different factors in seconds of time, dynamic
pricing became one of the most important strategies, but for Algerian users and all
users around the world, they always ask for the price first before using the service
or buying the product. Without a great dynamic pricing system, service providers
were only able to provide a range of prices putting clients in range of confusion.

Supposing that we are providing a client with a service that has different factors
that can affect its price, for example, one of the factors is uncontrollable time that
varies from 10 minutes to 50 minutes, in this situation we can tell the client that
the price varies from 100dzd to 500dzd because he pays 10dzd for a minute. At the
end of the service, the time was 70 minutes, which has 2 results, either the client
pays the unpredictable extra 200dzd and he will never use the service again, or the
service provider pays it and the income of the company gets low. A good dynamic
pricing system will put neither the client nor the service provider in this situation
and the offer will be 700dzd from the start, take it or leave it.

For a Driver On Demand (DOD) service the challenge is even higher, because
there are 3 parts in the deal, the service provider, the driver, and the passenger.
Both the driver and the passenger are opposites, so if the cost is a good income for
the driver, that cost will be paid by the passenger and in this scenario the service
provider wins one client and loses the other, in another scenario driver has a bad
income and the passenger is satisfied for paying less for the ride, and here, the
service provider loses driver and wins the passenger. A middle satisfaction scenario
where both clients are not very satisfied, but satisfied, that’s the dynamic pricing

system.

11

Chapter 2 : Dynamic pricing in Driver On Demand application

2.2 Basic concepts

The terms surge, discount, prediction and Competition monitoring are the basic
concepts of this work, that’s why we will try to present some definitions to make
moving through this thesis more understandable and to simplify the comprehension

of dynamic pricing.

2.2.1 Surge

A surge is defined in the Collins dictionary ! as an increase or a sudden development
in a factor like feeling or distance that was fixed on certain value, or was improving
slowly at a constant small rate.

It is defined in the Oxford dictionary 2 as a sudden powerful forward or upward
movement caused by a crowd or some natural force.

In certain events, numbers increase more than common rate. For example, in a
zone that used to hold 1000 people, if a cultural event happens in that area number

of people can reach a million.

2.2.2 Coupon

A coupon is defined as a small piece of printed paper that allows you to get a product
or a service for free, or to get a discount to pay less than the usual price 3.

When we talk about coupons in the digital world, it’s more of a code than a
piece of paper, and it’s a strategy applied by a service provider to get new clients,

or to enhance the use of the service at certain periods.

2.2.3 Prediction

A prediction is defined # as a phrase stated by someone saying what he thinks will

happen in the future.

Thttps:/ /www.collinsdictionary.com /dictionary /english /surge

2https:/ /www.lexico.com /definition /surge
3https://www.collinsdictionary.com /dictionary /english /coupon
“https://dictionary.cambridge.org/dictionary /learner-english /prediction

12

Chapter 2 : Dynamic pricing in Driver On Demand application

In our field, prediction is more of a forecast, which is deciding on a future value
of a factor based on old data that have old values of that factor and that certain

time.

2.2.4 Competition Monitoring

Competition monitoring is following the data and strategies of service providers in
the market that offer a similar service as you.

In a Driver On Demand (DOD) service, for example, it’s done by the marketing
team, and it’s basically noting pricing strategy, new features, etc. of other companies

and these data are used to decide on the service’s pricing and features.

2.3 Dynamic pricing

Dynamic pricing consists of 4 main systems, Interactive system handled by market-
ing and based on competitors monitoring, Coupons system for handling discounts,
Surge pricing based on drivers availability and passengers requests, and prediction

system that defines price using forecasts.

2.3.1 Interactive system

Interactive system is the non automatic part of dynamic pricing, it allows the mar-
keting team to decide on a basic configuration that decides the price of a ride. The
basic configuration includes the basic price which is the minimum fare, price per
distance, and price for long distances.

For a better choice of this basic configuration the system uses a comparing
subsystem that compares the price for 2 points A and B with prices of competitors

in the market.

2.3.2 Coupons system

One successful marketing strategy to win over clients is offering discounts, especially

on special occasions. Coupons system takes into consideration the discount strategy,

13

Chapter 2 : Dynamic pricing in Driver On Demand application

either it is for individual users, for a group of users and also the reason of this

discount, either it’s a special occasion, or for using the service daily.

2.3.3 Surge Pricing system

In Driver On Demand (DOD), drivers are free to work in the area they want, and
pick the zone they want to drive in, which leads to the variation in the capacity of
each zone. For the goal of attracting more drivers to work in a certain zone that has
a high number of requests and low number of drivers, surge pricing takes lead by
augmenting the fare cost in the area which will be a goal for all drivers. The system
works by setting a surge multiplier for that area, the only inconvenience is that it

must be controlled so that the multiplication factor doesn’t go overboard [3].

2.3.4 Prediction system

The main system in our work is the prediction system that allows giving an exact
estimation of the price of the ride which affects the client’s decision and make it
quicker. The factor that decides the price is the time of the ride that is affected by
many other factors like traffic, weather, driver speed, and also the path taken by the
driver. Since other factors like the basic price, price per kilometer, etc. can change
over time, our system predicts the time and not the price.

Time of the ride can be estimated using Google Maps API, but the price of the
service which is 8% per 1000 request makes it an avoidable solution although it gives

a good estimation.

2.4 Conclusion

In this chapter, we have presented the basic concepts of pricing and the main sub-
systems of a dynamic pricing system. These basics will give us a good understanding

of the next steps in implementing our solution.

14

Chapter

Analysis of the current situation

Sommaire
3.1 Imtroduction00, 16
3.2 Existing project 0000 17
3.2.1 Web application 17
3.2.2 Mobile application 21
3.3 Problems with the existing project 22
3.3.1 Architecture 22
3.3.2 Code structure 22
3.3.3 Mapsservice e 22
3.4 Tasks that should bedone 23
3.5 Conclusion. oo 23

3.1

One of the challenges of our internship was working on an existing project. Valley
solutions decided at first to go for a freelance project, and although the freelancers
ended by building a functional system that has basic functionalities of a DOD appli-

cation, it was lacking some functionalities and contained some problems that will be

Introduction

16

Chapter 3 : Analysis of the current situation

discussed in this chapter. Figure (Fig. 3.1) shows the final deployed Ouigo project
of the IT team.

Figure 3.1: Deployment diagram of the existing Ouigo system

3.2 Existing project

Ouigo had the very basic functionalities developed with MEAN! Stack, and it’s
consisted of 2 applications, a web application for the admin to control the system,

and an android application for both riders and drivers.

3.2.1 Web application

Figure (Fig. 3.2) shows the web interfaces of both login page and the dashboard

that has many pages, each page with its functionalities.

'MEAN : MongoDb - Express - Angular - NodeJs

17

Chapter 3 : Analysis of the current situation

(a) Login Page

OuIGO O A
Dashboard
2 2)5 4 @ 24 (:} Total Revenue |]|:|[|
& Roles & Privileges Total Riders Total Drivers Total Vehicles
* Users
& Vehicles DRIVERS RIDES
Rides B Online Drivers [Active Drivers B Successful Rides mmmmm Unsuccessful Rides

Scheduled Rides

Settings

Payment

Static Pages

Banners

Credits

(b) Dashboard Page

Figure 3.2: Web interfaces of the existing Ouigo application

Use case diagram

Figure (Fig. 3.3) shows the functionalities of the web application of Ouigo. Many
functionalities were grouped together in some use cases to simplify the diagram but

will be detailed in this part.

18

Chapter 3 : Analysis of the current situation

System

Get statistics

Set roles for stakeholders
=ihciudex> .
- NN
manage users = = -eao__ - - = sincl N //"’—-\\
e Authentification
7

,---—“5’__—//

_ _sslnchmess " -7,
Admin manage vehicles """ Pl gl
==inchife>> e

-

ar - -
-
. —-E z<Inghide>>
manage rides L
-
- -

N
=<Inthude=>

Figure 3.3: Use case diagram of the existing Ouigo web application

* Get statistics: The admin can get information about number of rides, drivers
and vehicles, he can also see visualization of online/offline drivers and rides with
different states.

* Set roles for stakeholders: Each user who is also a stakeholder has access to
certain and precise functionalities of the system, the admin here can set roles for
users and also give specific privileges to each role.

* Manage users: The admin can add and manage riders, and drivers by controlling
their active state and their juridic information.

* Manage vehicles: Where each driver sign up with his own vehicle, the admin
can manage and keep on track those vehicles for juridic purposes.

* Manage rides: This functionality gives the admin the ability to get all completed
and uncompleted rides where each ride has its fare and tips.

* Change website settings: Where the admin controls all static pages with their

details, like contact information, about us section, header, footer, etc.

19

Chapter 3 : Analysis of the current situation

MongoDB Database

reviews notifications eaaisteste e S | commissions

8 i objectd NN =8 objectd NN =8 objectd NN -8 objectd NN
user i sting NN user g g W userid sing NN pricefrom doudie NN
onrideid sring NN notty_to sring NN place_name sting NN rice_to doubie NN
review_ message suing NN tide string NN place_ull address sting NN percentage double NN
rating doudle NN message saing NN place latude double NN v double NN
driver id suing N notifed_at sting N place_Jongitude double NN
reviewed at dore N v double NN place_ty sing NN
v cousie W soogelace 4 sting WN

v doubie NN =0 d objectid NN
[e ———] e g

o tjctd N desrton g

] objectd NN tip_amount doutle NN price doudie NN
name suing NN donation. amount double NN v objectd NN image sring NN
] doutie N payment type.cash double NN tile suing NN v doutle NN

payment type walet double NN content g NN
notify double NN image string. NN
appointments e dukie i stows doe NN
= otyectd NN pickup.ing string. NN type sring NN abjectid NN
car - baseprice n v double NN stng NN
nerloc_id string NN drop_lat NN string NN
user_appoinmentdate stng NN category id NN seng. NN
user_appoinmentime suing NN pickup.location w va id otjecid NN notified_at de W
droprg " tie string NN v double NN
plckup ot " content

S w paeope

K - objectid NN o " status
user id stng NN e " type = 0 objectd NN
onride id sting NN THesatusat w v walltmoney double NN
driver id sting NN rested st W ridecount double NN
amount doutle NN N NN amenites sring. NN
created.at dote - " pushnot doutle

ridestatusstart N defaultaddr double NN :’F::: Z;Ii,ii "
ot N name string NN e e
payments commissionamount N v doutle NN o e
K] objectid NN x N proenags s
ax aw payment id N -
country._code double NN
oot o i " Shone.number doule W
paidbywallet w schedule.tme v i objectid NN refer ids sting NN
pod - usetoined doute AN i e
tip_amount e o L
S " firstrde double NN emergeny omack () s ot N
payment type_cash w w0 id objecid NN EDD il
payment type_wallet w e suing NN
user id N description sting. NN | e]
onrde id N image sering. NN s e
ride fare w approval K objectid NN
baseprice N settlements loct] name sring NN
driverid ~ id abjectid NN completionStatus email sring. NN
drop_time NN driver id suing NN amenites username sting NN
- w~ total_ridefare double NN iy password sting NN
setlement id NN otal_commissionamt double NN review service smptHost suing NN
total tax doubie NN review_conduct smipPassword sring NN
otal_earning double NN review. cleanliness mipPort srng. NN

ride.count doute W reminger ing W

= objectd NN payment status suing NN emall BroinureeSiatus doutle NN
eview conduct doutie NN created_at dae NN password string NN
onri sting N v double NN fullname merchandid string NN
user id sting NN tat privatekey sring NN
review message sting NN fon publckey g NN
review_punctualty doutle NN wallets instant at distancePerCab string. NN
driver id seing NN - objectd NN instant Ing driverTimer doutie NN
created dare dste N user id stong NN location maxDistance double NN
) doutle NN amount double NN vehici inspection string NN

wansacton.id sung NN securiy. deposit currencyCode srng. NN
type suring NN ameymid v

F— wansaction sring NN siteName stng
B o v doutle NN N FCMUserkey sring NN
[o onvide id sung NN vehicle id googleMapkey stng. NN
onieed e inspectionon sring. NN
user id sting NN country_code P P
review message g N phone_number uble maxdspertde e
review cleanliness doutle NN = id objecid NN status sring P ot S
review service doutie NN sring. NN amers N

s st NN category 1d

e e N helppagesheader sting. NN
created_ date date NN suing NN spectonon S e
N double NN emergency_contact [(}] drivers emerger googleplus sring NN
i) instagram sring. NN

i nkedn i

= objectid NN " witter sng N
amount doute N andrldDrver P
) doubie NN = 0 objecid NN androiduser string NN

foid " fosorver g W
amount w objectd NN fosuser sring. NN
detall w suing NN role.i doutie NN
b o user.id_from o 5 NN userlevel sung NN
staws created_date NN oun doutle NN userstatus dousle NN
user.id v doutie NN areatedat " smipemail sring NN

date
double NN

completionstatus

body_type name string feedback String NN
Ll title string NN
o status. string NN

‘vehicle_number phone_no string NN o

insurance_no name string NN

Figure 3.4: MongoDb documents of the existing Ouigo application

Chapter 3 : Analysis of the current situation

3.2.2 Mobile application

Q© B [i .4 34% M 3:34 PM /IEI i

Q© @ [al 4 .al 33% M 3:35 PM

Online

R

oTP
Begin Ride

(b) Beginning the ride

5eme Rue, Kouba, Algérie

00:00:58

Accept Ride

(a) Accepting the ride

B i Q@ @[l * .4l 33%8 3:36 PM (= Q@ B[% .4l 33% 8 3:36 PM
Ride Completion Ride Completion
. Grand Total
llyas Hanagria 376.25 DA
Ride Summary

Ride fare 361.25 DA

Tax 0DA

Tip 15DA

@ Donation 0DA

Payment in progress, please invite the Credits Used 0DA

passenger to validate!

Payment Type
Cash

Collect

(d) Confirming the ride (e) Payment report

& i QQ@ DL % al 33% 8 3:35PM
Bab El Qued
P SOS ALERT
C§sbah
Oued Koriche ccal

s 3l
El !jazair

TELEMLY 5l
%]

° Mustapha University:
Hospital Center

ElMouradia ALGIERS
Lol Slidl

The shrine of the martyr o

ydra

>

DROP .
) o Navigate
Rue Larbi Ben M'hidi, Alger

Ctre 16000, Algérie

Complete Ride

c¢) Completing the ride

Bii Q@ [% .al 33%M 3:36 PM

X

How was your trip with llyas
Hanagria

Punctuallty

1.8 8.8 8 ¢
1 0. 8.8 & ¢

Friendliness

YOUR MESSAGE

(f) Reviewing the driver

Figure 3.5: Existing mobile application functionalities

For the mobile application that is only available for android, the basic functionalities

are introduced in Figure (Fig. 3.5) and it shows the process of a ride for the driver

application, and the passenger application.

When the passenger choose pickup and destination location a ride is requested

then the driver is prompted with figure (Fig.3.5a) where he can accept or skip the

21

Chapter 3 : Analysis of the current situation

ride request. The driver then arrives at the location and picks up the passenger to
begin the ride as seen in figure (Fig. 3.5b), the moment he arrives at the destination
location, the driver needs to complete the ride and wait for passenger’s validation as
seen in figure (Fig. 3.5d), while this step is not necessary in terms of user experience,
it is very necessary for user’s security.

When the ride is completed and confirmed the driver collects the money as seen
in figure (Fig. 3.5e) and the passenger is prompted with the final step (Fig. 3.5f)

where he reviews the driver for punctuality and friendliness.

3.3 Problems with the existing project

3.3.1 Architecture

The monolithic architecture was used to build the full MEAN stack, and while this
architecture is functional, it has many drawbacks, especially for the desired project.

The monolithic approach is simple and not preferable for big projects, because
the bigger the project is, the more complex and the hardest is to make changes
or to scale the application.Another drawback is the need to redeploy the whole
application when making any change, and also a bug in a module can bring off all
other modules.Without forgetting an important issue, which is the need of developers

working with the same technologies.

3.3.2 Code structure

A challenge in the application was that the code is not very well structured, and
also not documented, which means that adding functionalities would take more time

and requires understanding the conception before executing.

3.3.3 Maps service

Since the application is monolithic, Everything used by the android application was
hard-coded including the map functionalities. Since the application uses Google

Maps API, another issue was the need to secure the premium key.

22

Chapter 3 : Analysis of the current situation

3.4 Tasks that should be done

Before working on the current project, different issues must be resolved to start
implementing the dynamic pricing solution, which leads to the following tasks:
Code refactoring

The first task to do is refactoring the web application code, for both front-end and
back-end, to add dashboard functionalities for the marketing team.

Migrating to micro-services architecture

Working with the IT lead developer, the next task is dividing the application into
sub-functionalities and isolate each functionality into a proper micro-service, in its
own ready to deploy the image.

Implementing maps micro-service

Choosing to work with Google Maps API wasn’t the final decision, this task is
basically doing a benchmarking on different maps services and finishing with an
implementation of a map micro-service that can be used by the android application,
the dashboard and the pricing micro-service.

Implementing pricing micro-service

The last task is doing a study on the dynamic pricing to decide on the functionalities
of the service since the title was a little bit noisy, and finish by implementing a micro-
service ready for deployment that works with both the mobile application and the

control dashboard.

3.5 Conclusion

In this chapter, we have presented a study on what already exist in the project by
defining the drawbacks of the implemented solution and the tasks that should be
implemented. As it was clear the existing application was not scalable in terms
of functionalities and a basic understanding of it is a must before jumping to the

conception part.

23

Chapter

Analysis and conception of the system

Sommaire
4.1 Introduction e 25
4.2 Analysisofneeds. L 00 26
4.2.1 Functionalities 26
4.2.2 Use-case diagram 26
4.2.3 Sequence diagram 32
4.3 Conception i ittt 35
4.3.1 Architectural conception 35
4.3.2 Classesdiagram, 37
4.3.3 Activity diagram 39
4.4 Conclusion. 000 e 40

4.1 Introduction

In this chapter, we begin by identifying the needs that must be addressed and
satisfied in the development phase. We use both the use case and sequence diagrams
to express the desired functionality of the system, then we model the data of the

system through a class diagram and the business aspect through an activity diagram.

25

Chapter 4 : Analysis and conception of the system

4.2 Analysis of needs

The expression of needs is a phase that consists of understanding and determining
the different functionalities and the needs of the system. Before starting the con-
ception, we list the functional and non-functional (technical) specifications that will
be used to establish a complete conception of the solution.

In order to structure the specifications and to properly manage development
activities, an organization of the specifications in modules is necessary.

Our system consists of several micro-services, where each service has it’s own
functionalities. We can group these functionalities into 4 sub-systems, the basic

pricing system, surge pricing system, discounts system and price prediction system.

4.2.1 Functionalities

To simplify the development of the functional specifications of the system, we have
defined a group of sub-systems (pricing, surge, discounts and prediction). The fol-

lowing table describes the priorities assigned to the specifications.

System Priority
Basic Pricing Configuration P (Must have for production build)
Discounts System W (want to have but can wait)
Surge Pricing F (Future implementation when there is enough data)
Price Prediction F (Future implementation when there is enough data)

Table 4.1: Priorities of the functional specifications

4.2.2 Use-case diagram
Use-case of the basic pricing configuration system

Figure (Fig. 4.7) presents a Use Case diagram for the basic pricing configuration.
When the admin choose a pickup and destination location, he is able to estimate
the price of Ouigo ride, and also get prices of competitors in the market, so he can

then configure the appropriate pricing settings.

26

Chapter 4 : Analysis and conception of the system

Basic pricing
configuration

system

Sub-system

Configure Pricing
Include Mairf Sefyver
“;\
Estimate the price >,
\‘Ln [——

Get prices of competitiors

A

Pricing Microservice

AM icroservice

. \
*s. Include -,
" *

N

InciL;d-e'“—;
Pick depart and
destination places

Figure 4.1: Use case diagram of the basic pricing configuration system

The following tables elaborates the use cases "Configure Pricing" and "Get

prices of competitors", the use case "authentication" is removed from the diagram

to simplify the diagram, but all the authentication operations require authentication.

Use case

Configure Pricing

Objectif

Allows the admin to update pricing calculation settings

Pre conditions

- Login to the dashboard
- Choose a pickup and destination points
- Get the old configuration from the database

Post conditions

- The system updates the configuration

Scenario

1 - The system shows the update form with old configuration
2 - The admin fills the form with new values

3 - New price gets estimated with new values

4 - The admin compares new price with competitors

5 - The admin saves the new configuration

Table 4.2: Description of the use case "Configure Pricing"

27

Chapter 4 : Analysis and conception of the system

Use case Get prices of competitors

Objectif Gives the admin an overview of competitors prices

- Login to the dashboard

P d't'
e conarions 1 choose a pickup and destination points

Post conditions | - The system shows prices of some competitors

1 - The admin chooses the depart and destination points
Scenario 2 - The system gets all prices of different apps
3 - Prices are shown in cards

Table 4.3: Description of the use case "Get prices of competitors"

Use-case of the discounts system

Discounts system
Sub-system
Add Coupon

'""-—.._‘____—_
T
Main Herver
Update Coupon
.'—'—""'_'—FF._#
Admin
Get Coupons and
invested money

Pricing Microservice
Apply Coupon

Passenger

*». Include

Figure 4.2: Use case diagram of the discounts system

Chapter 4 : Analysis and conception of the system

Figure (Fig. 4.2) represents a Use Case diagram for the discounts system. The admin
can do basic managing functionalities like adding a new coupon and updating a
coupon. He can also get an overview on how much money is invested in those
discounts and users who are claiming the coupons.

For a passenger, he can apply a coupon when he requests a ride.

The following tables elaborates the use cases "Apply Coupon" and "Get Coupons
and invested money", the use case "authentication" is removed from the diagram to

simplify the diagram, but all the authentication operations require authentication.

Use case Apply Coupon
Objectif - Apply a reduction in the ride price
- Saves money won by the client
Pre conditions | - Request a ride
- The ride fare is updated
- The money investment is saved
1 - The passenger requests a ride
2 - The system checks the coupon availability
Scenario 3 - The system checks if coupon is used
4 - new price is sent to the app
5 - Invested money is saved

Post conditions

Table 4.4: Description of the use case "Apply Coupon"

Use case Get Coupons and invested money
.. - Show coupons
Objectif - Get redeelfners and money saved for each coupon
Pre conditions | - Login to the dashboard
Post conditions | - A table with all coupons is shown
1 - Admin login to the dashboard
2 - Coupons with details of each coupon are shown

Scenario

Table 4.5: Description of the use case "Get Coupons and invested money"

Use-case of the surge pricing system

Figure (Fig. 4.3) shows a Use Case diagram for the surge pricing system. The admin
is responsible for activating or dis-activating the service, he also sets up a range for
the surge score so it doesn’t go beyond certain values. When the service is in the
active state, the price estimated by the app puts in consideration the availability of

drivers and rides demand in the appropriate zone.

29

Chapter 4 : Analysis and conception of the system

Surge Pricing
system
Sub-system

Admin

Update surge
configuration
.._‘_‘_‘_‘_‘_‘____—-
.
Main Ferver
Disactivate surge
''_'_._'_,_,..—-'“

Activate surge

e

Pricing Microservice

|
{Include
|

Get surge

Figure 4.3: Use case diagram of the surge pricing system

The following tables elaborates the use cases "Update surge configuration" and

"Get surge", the use case "authentication" is removed from the diagram to simplify

the diagram, but all the authentication operations require authentication.

Use case

Update surge configuration

Objectif

- Setup a range that controls the surge pricing

Pre conditions

- Login to the dashboard

Post conditions

- Surge pricing settings are updated

Scenario

1 - Admin login to the dashboard
2 - Admin sets a minimum multiplication score
3 - Admin sets a maximum multiplication score

Table 4.6: Description of the use case "Update surge configuration"

30

Chapter 4 : Analysis and conception of the system

Use case Get surge
Objectif - Get a score multiplication for the current zone
Pre conditions | - Activated surge pricing

Post conditions | - multiplication factor is recovered

1 - Passenger requests a ride

Scenario 2 - Pricing system checks the state of the surge system
3 - Multiplication factor is recovered

Table 4.7: Description of the use case "Get surge"

Use-case of the price prediction system

Figure (Fig. 4.4) shows a Use Case diagram for the price prediction system where
the admin is responsible for activating or dis-activating the service. As for the price
estimation, when the service is in active state the server uses the prediction system
to get the duration of a ride and uses it to calculate the price, and when the service

is inactive, the server uses google maps to get the duration.

Price prediction
system
Sub-system

Disactivate prediction

Admin Main Eerver

Activate prediction

ilnclude
.'—-'-"—F"’Fr

M Pricing Microservice

Include ¢
:

Figure 4.4: Use case diagram of the price prediction system

31

Chapter 4 : Analysis and conception of the system

4.2.3 Sequence diagram

Dynamic pricing groups many tasks for both passenger side, and admin side. In this

section we present diagrams of processes that we judge are important.

Sequence diagram for pricing configuration

:Admin

Backend-Microservice

-Pricing-Microservice

o=

Send point A and point B

J -

Get pathl information

:Maps-Microservice

T
P
'
'
'
'
L

h 4

F--ee]

Send path information_Jl

Return path information

Retun prices Return prices

:| Estimate price

:| Change configuration

.
|
|
|
.
|
.
|
!
.
|
.
|
.
|
!
|
|
|
|
.
|
.
|
!
.
|
.
|
|
.
.
.

-]

}--

h 4

Recalculate Recalculate

A

Return new price

Update configuration

A

Return success

Return new price

¥

:| Get competitors prices

Figure 4.5: Sequence diagram of pricing configuration process

Pricing configuration consists of many tasks including managing categories and man-

aging periods, but the important part is the basic configuration. The admin chooses

32

Chapter 4 : Analysis and conception of the system

two points, depart and destination, then the system shows prices of both our ap-
plication and other competitors. An overview of these prices allows the admin to
decide on his own configuration, and at this point he starts tweaking the settings to

get to the appropriate configuration.

Sequence diagram of ride confirmation

:Passenger :Pricing-Microservice :REDIS
H = |
Comfirm ride _i_
Get record »
Alt
) [
[record exists] Return record
else
[else] p _
-,I new estimation

Figure 4.6: Sequence diagram of the ride confirmation

The price is estimated after requesting a ride, which means before confirming the
ride. One of the flows of DOD applications is that the user can request a ride in the
morning when the price is low and keep the application running, then at night, he
can confirm the ride with that price.

To solve this problem we though about saving a record when a ride is requested
and generating an id for that request, then when the ride is confirmed, the system

checks the record that has a lifetime of some seconds, when record isn’t found the

33

Chapter 4 : Analysis and conception of the system

system runs a new estimation.

Sequence diagram for pricing estimation

:Passenger :Pricing-Microservice

:Backend-Microservice

‘ :REDIS ‘

‘:Maps-M\cmsewice

‘ :Zones-Microservice

H ’ |
Request a ride H }

Get config uration

Return config, surgé and prediction state

|

Alt)

[surge.isActive = true]

Get zones

Return zones

Normalize score

| an)

[prediction.isActive = false]

F Send localization
Return path information

[else]

Predict duration

Estimate ride price

opt

Insert coupon code Apply coupon

Return price

Return price Save record

Figure 4.7: Sequence diagram of the price estimation process

34

Chapter 4 : Analysis and conception of the system

The most important process of our solution is the price estimation. When the user
requests a ride the pricing system gets the pricing configuration, then checks for
surge and prediction state.

When surge pricing is active, the service communicates with zones service that
returns 3 zones, the zone where the user is located and 2 near zones that have high
demand, then the system detects the current zone and its score. The score is then
normalized to be used in the price estimation.

When the prediction system is active, the pricing service uses it to get details
about the requested path, in case it is not active it uses maps service.

The user can apply a coupon code that applies a discount on the price, the
system then returns the new price and saves how much money will the company pay

for the client.

4.3 Conception

Before giving a general overview of the system conception, we are going to define

some notions on which the conception is based.

4.3.1 Architectural conception
Architecture based on Micro-services model

Coding gets harder when adding more functionalities. It can be difficult to know
where a change needs to be made because the code base is so large, and although the
base of monolithic codes is clear and modular, its arbitrary limits during manufacture
break too often. The code linked to similar functions starts to spread everywhere,
making bug fixes or the implementation of new features more difficult.

Within a monolithic system, we fight against these forces by trying to ensure
making our code more consistent, often by creating abstractions or modules. Cohe-
sion ! is an important concept when we think of micro-services.

Micro-services take the same approach as independent services. We delineate

!Cohesion : The willingness to group associated code together

35

Chapter 4 : Analysis and conception of the system

the service by the boundaries of the trade, which makes it obvious where the code
is for a given functionality. By keeping this service focused on an explicit limit, we
avoid the temptation for him to grow too much, with all the associated difficulties
that this can introduce, generally micro-services should be designed in such a way

that they are developed from zero in a single two-weeks sprint [4].

REST

REST is the acronym for "REpresentational State Transfer", it is an architectural
style for distributed hypermedia and it was first featured by Roy Fielding in 2000
in his famous thesis, known for its decoupling and light communication between the
producer of a resource (Server) and its consumer (Client) [2]. Generally used with
the HT'TP protocol, REST is the preferred mode for creating interfaces for applica-
tions (API). REST has 6 main principals that are listed below:

* Client—server : By separating the user interfaces from the data storage and the
back-end, we improve the portability of the user interface across multiple platforms
and improve scalability by simplifying server components.

* Stateless : Each request from the client to the server must contain all the infor-
mation necessary to understand the query, and cannot take advantage of any stored
context on the server. The session state is therefore kept entirely on the client side.
* Cacheable : Cache constraints require that the data in a response to a query
are implicitly or explicitly labeled as cacheable or non-cacheable. If a response can
be cached, a client cache has the right to reuse that data for subsequent equivalent
queries.

* Layered system : The layered system style allows an architecture to be made
up of hierarchical layers by constraining the behavior of components so that com-
ponents cannot "see" beyond the immediate layer with which they interact.

* Code on demand : REST allows the functionality of the client to be extended
by downloading and by executing code in the form of applets or scripts. This sim-
plifies customers by reducing the number of features to pre-implement.

* Uniform interface : In order to achieve a uniform interface, several architec-

tural constraints are necessary to guide the behavior of the components. REST is

36

Chapter 4 : Analysis and conception of the system

defined by four interface constraints: identification of resources; handling resources
through representations; self-descriptive messages; and hypermedia as the engine of

the application state.

4.3.2 Classes diagram

The figure (Fig. 4.8) presents the class diagram of our system conception. In this
diagram, we present the most important classes, where each service groups together
some of them.

The 2 main classes of the system are competitors class that holds the prices of
competing DOD services, and estimator class responsible for price estimation. They
both use the maps classes to get path details.

Estimator class This class has 4 main functions:

* Price calculation function that sets an equation of the price decided by
marketing team.

* Estimation function runs when requesting a ride and estimates the price based
on the configuration, surge service, prediction service and coupons.

* Marketing getter is a function similar to the estimation function that handles
pricing for marketing team.

* Record function runs when confirming a ride and checks for estimation record

existence, if it doesn’t exist, it runs a new estimation.

37

Chapter 4 : Analysis and conception of the system

Figure 4.8: Classes diagram of the dynamic pricing system

38

Chapter 4 : Analysis and conception of the system

4.3.3 Activity diagram

o N

Getting geolocalization

Y \

Duration Prediction Basic Configuration Surge score

S =
i

Ride Fare

Add cpupon

Ride Fare with surge yes

Final Ride Price @

Figure 4.9: Activity diagram of the dynamic pricing system

The following activity diagram gives a vision of the sequence of activities specific to

an operation or use case, in figure (Fig. 4.9) it shows price estimation activities in

39

Chapter 4 : Analysis and conception of the system

the ideal form where surge and prediction services are active.

The activity diagram is attached to a class category and describes the course
of activities in this category. It indicates the share taken by every object in the
execution of a job. It will be enriched by the conditions sequence. The activity

diagram allows us to see the internal behaviors of the system.

4.4 Conclusion

In this chapter, we have identified the needs that we will try to meet and satisfy
in the development phase. We used the use case and sequence diagrams to express
the functionality desired by the system. Subsequently, we modeled the system data

through a class diagram and the business aspect through an activity diagram.

40

Chapter 5

Ouigo Pricing: A system that manages the
dynamic pricing for Ouigo DOD

application
Sommaire
5.1 Introduction: Presentation of the system 42
5.2 Architecture of the system 43
5.2.1 Maps micro-service 44
5.2.2 Pricing micro-serviceo 44
5.2.3 Web application 46
53 UIL/UX . . . ot it e e e e e e 46
54 Conclusion. o L oo e e 51

5.1 Introduction: Presentation of the system

The system is called "Ouigo Pricing". It helps the marketing team decide on their
pricing strategy, control the pricing of rides, and also calculates the price based on

surge zones, and the prediction system that decides the duration of the ride based

42

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo
DOD application

on previous rides using machine learning. This system is developed in NodeJS and

Python.

5.2 Architecture of the system

Dashboard Ouigo Application

android

.
kubernetes Backend *
COCKEer
AP GATEWAY
ﬂ\ldc—b .11mngn
L4 L 4
Pricing Microservice b Maps Microservice -
docker docker
S — redis = — Q
REQUESTS °_ ¥
NODEIS NODEJS
docker
Matching Microservice
[E—
docker
{> Zones Microservice -

Figure 5.1: Architecture of dynamic pricing system of Ouigo

The pricing of DOD application requires both the pricing strategy, pricing factors,
and the control of the marketing team, for that purpose it needs the implementation
of different systems. Our prototype uses the approach of micro-services, which are

the maps, micro-service that handles everything related to Geo-localization, and

43

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo
DOD application

the pricing micro-service that handles everything related to ride fare estimation. In
addition to that, the system includes the control dashboard.
Figure (Fig. 5.1) shows the architecture of our system, that we will define with

details in this following parts.

5.2.1 Maps micro-service

Maps service groups together all the functionalities used by the pricing system, and
other micro-services, these functionalities are getting suggestions that give places
list when typing first letters, getting Geo-localization latitude and longitude from
text, and getting directions including duration, distance and polygon.

The implementation of this micro-service requires doing a study on different

maps APIs to decide on what fits the company.

APIs Benchmark

Google Maps API has all the functionalities needed, on the other hand the cost
of those functionalities which is 8% per 1000 requests is quite challenging. Because
of that we’ve put the service in comparison with other services like HereAPI and

BingMaps in terms of features, data and styling, and cost.

5.2.2 Pricing micro-service

Pricing service is the main part of our system, developed using NodelJs, it gets depart
and destination latitude and longitude as input from the mobile application and

returns final exact prices for different categories. The service has 4 functionalities:

Basic pricing

Before selecting a ride, the user chooses the car type, and price changes in different
periods of the day, the service uses MongoDB to get this data, and uses it to calculate
the basic price.

The price also depends on different factors like weather, traffic, etc., which can

be grouped together in duration factor, and for this, the service has the prediction

44

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo
DOD application

functionality.

Price prediction

The changing factor that groups many aspects is the duration of the ride. Ouigo
pricing uses Maps service, as a default duration predictor, but since the Google Maps
API costs much, the pricing service uses it’s own prediction system using machine
learning and Python language. This sub-system checks if the prediction is active or
not, in case it’s active, we use our own model, and in case it’s it’s inactive, we use

Google’s model.

Surge pricing

Surge pricing sub-system augments the price based on the drivers availability and
rides request. To retrieve this information the pricing service communicates the
depart location to the zones micro-service, which was developed by our colleagues
yacine BENKAIDALI and Akram BENRANDJA, and it basically divides
the region into zones and returns 3 zones where each zone has a demand score and
one of those zones is the depart zone. The sub-system then retrieves the depart
zone and normalize the score based on marketing configuration, so we can use it as

multiplication factor.

Applying coupon

When the price is estimated, the passenger can redeem a coupon code, this sub-
system takes that code and checks if it’s active. When the coupon is active, the
sub-system return the new price with discount to the mobile application, and saves
the reduction rate of the price, and the number of users who redeemed that code.
Price estimation is recorded in Redis database to create the future data for the

pricing prediction.

45

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo
DOD application

5.2.3 Web application

After refactoring the code of the existing web application, we implemented the
pricing control functionalities, which allows full control over the pricing service,

those functionalities are already discussed in the previous chapter.

Back-end

The back-end was developed with NodelJs, one of the reasons we had to stick with

the technology, and it has its own MongoDB database.

Dashboard

Since the dashboard was built with an old Angular version, we had to stick with the
technology to not invest lots of time in the upgrade process. We implemented the

pricing interfaces ready to be assigned to the marketing role.

5.3 UI/UX

These next figures show different interfaces for controlling the pricing service.
In figure (Fig. 5.2) admin adds filters that user will use later to get the perfect

matching driver.

L -]

OuIGO 5 T

g vencies

€ pricing GESTION DES FILTRES

Configuration

Nomde filtre Actions

1 Carte de Crédit acceptée n
Categories
Periodes 2 AirConditionné n
Surge

3 Non Fumeur n

Filtres

Coupons

% Rides 4 Grand Coffre n

Figure 5.2: Web UI - Managing filters

46

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo
DOD application

OuUIGO S A~

g VEmnICies

e GESTION DES CATEGORIES

Configuration

Nom de categorie Prix de categorie Actions
Filtres

q taxi 25 n
Categories
Periodes 2 dame 60 n

Surge

3 citadine 40 ﬂ
Coupons

'S Rides

(a) Viewing Categories

OoUIGO o A

gmy vencies

€ Pricing AJOUTER CATEGORIE

: . NOM DE CATEGORIE
Configuration

Filtres

BASE PRICE
Categories

Periodes
CATEGORY IMAGE

Surge Choose File | No file chosen

Coupons

& Sauvegarder

‘9 Rides

(b) Adding Categories

Figure 5.3: Web UI - Managing categories

Figure (Fig. 5.3) presents the basic CRUD! functionalities for managing cate-
gories and setting their prices, where each type of car has its own extra price.

In figure (Fig. 5.4) the admin can manage periods of the day, for DOD ap-
plications the price gets high when the risk for the driver gets high and when the

availability is low, so every period of the day has its own multiplication factor.

LCRUD: Create, Read, Update, Delete

47

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo

DOD application

OuIGO

gy vencies

€ Pricing
Configuration
Filtres
Categories
Periodes
Surge

Coupons

‘9 Rides

OuIGO

g venicies

€ Pricing

Configuration

Filtres

Categories

Periodes

Surge

Coupons

) Rides

GESTION DES PERIODES

Nomdeperiode Heurededebut Heuredefin

1 jour 06:00 19:00
2 minuit 23:00 6:00
3 nuit 19:00 23:.00

(a) Viewing periods
AJOUTER PERIODE

NOM DE PERIODE

HEURE DE DEBUT DE HEURE DE FIN DE PERIODE

PERIODE
-~ ~
~ ~
00 |:| 0O
00 |:| 00
v v
v v
cette heure n'est pas
disponible

COEFFICIENT DE PRIX

(b) Adding period

A o
L [on Tl

+ Ajouter Periode

coefficient de periode Actions

| @0
: @0
@0

PERIODES

jour

06:00 - 19:00

minuit

23:00 - 6:00

nuit

19:00 - 23:00

Figure 5.4: Web UI - Managing periods

Figure (Fig. 5.5) shows the interfaces for the coupon system, when viewing the

list of coupons in figure (Fig. 5.5a), the admin gets extra information about the

users who redeemed the code, and how much money the company invested in that

coupon.

48

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo
DOD application

OuUIGO GESTION DES CATEGORIES

o venicies

€ Pricing # Code Coupon Valeur Etat utilisateurs investisement Actions

e 1 ANNEE2019 15% [Active | 4 405 n
Filtres

2 ANNEE2020 35% [Active | 2 450
Categories
. 3 ANNIVERSARE 50dd ([T 1 250
Surge

4 TYTYT 89% =3 o 0

Coupons

") Rides

(a) Viewing coupons

QuUIGO AJOUTER COUPON

am venicies

CODE DU COUPON

€ Pricing

Configuration
TYPE DU COUPON

Filtres POURCENTAGE

. VALEUR DU COUPON
Categories

Periodes

ETAT DU COUPON

Surge

Coupons
DATE D'ACTIVATION DU COUPON DATE D'EXPIRATION DU COUPON
%) Rides mm/dd/yyyy --:-- -- mm/dd/yyyy --:-- --

(b) Adding coupon

Figure 5.5: Web UI - Managing discounts

As for configuring the pricing settings, the user starts by choosing a pickup and
destination location as seen in figure (Fig. 5.6a) then click the calculate button.
The admin then is prompted with figure (Fig. 5.6b) where he can find the prices of
competitors, and the price of our solution, then he starts tweaking the settings and

re-calculate the price until he is satisfied, the configuration is then saved.

49

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo
DOD application

OUIGO S A

Dashboard
Lieux de depart et destination

Roles & Privileges

Lieux de depart
Users

Lieux de destination
Vehicles

_ Calculer le prix
Pricing

Configuration
Filtres

Categories
bdjha

(a) Choosing depart and destination

QuUIGO ‘ COURSA ®
b~ t

g vencies
€ Pricing 412 385 445

Configuration

Filtres Configuration 0Ui90

Categories PRIX DE BASE PRIX PAR KILOMETRE

Periodes | 200 | | =0 | 395

Surge GRANDE DISTANCE POUR CHANGEMENT DU PRIX

|20 |

Coupons

PRIX PER KILOMETRE POUR GRANDE DISTANCE
Predictor

| 20 |

- Sauvgarder La Configuration

(b) Showing competition and configuring prices

'Y Rides

Figure 5.6: Web UI - Basic pricing configuration

Figures (Fig. 5.7) and (Fig. 5.8) shows the settings for both surge pricing and

price prediction system.

50

Chapter 5 : Ouigo Pricing: A system that manages the dynamic pricing for Ouigo
DOD application

OuUIGO oA

o venicies

€ Pricing

CONFIGURATION DU SURGE

Configuration
ETAT DU SERVICE

Filtres m

Catego[ies VALEUR MINIMALE DU SURGE VALEUR MAXIMALE DU SURGE

Periodes | | ‘

Surge & Sauvgarder la configuration

Coupons

9 Rides bdjha

Figure 5.7: Web UI - Surge configuration

OuUIGO A

am venicies

U P CONFIGURATION DU PREDICTION

Configuration
ETAT DU SERVICE

Filtres m

Categories & Sauvgarder la configuration

Periodes

Surge

Coupons

Predictor bdjha

Figure 5.8: Web UI - Price prediction configuration

5.4 Conclusion

In this chapter we have presented our system "Ouigo Pricing" with its general ar-
chitecture and UI. The following chapter shows the development and deployment

environment of this system, the experimentation and analysis of results obtained.

ol

Chapter

Experimentation

Sommaire
6.1 Introduction 0000, 54
6.2 Development environment 54
6.2.1 Languages and frameworks 54
6.2.2 Data Base Management System 55
6.23 IDEs 56
6.3 Collaboration environment 56
6.3.1 GitLab. 57
6.3.2 Trello 57
6.33 Slack 57
6.4 Deployment environment 58
6.41 Docker 58
6.5 Resultsanalysis 58
6.5.1 Basicprice 58
6.5.2 Surge price 59
6.5.3 Price prediction oL 59
6.6 Conclusion. oo, 60

93

Chapter 6 : Experimentation

6.1 Introduction

After having presented the theoretical and technical conception of our solution,
we begin the stage of carrying out in development, collaborating and building our
ready to deploy web application and the micro-services for maps and pricing. In
this part, we will present the technical solution and justify the chosen development

environment, the technical choices used and the languages adopted.

6.2 Development environment

6.2.1 Languages and frameworks

In this part we present the different technologies we used and justify each one of

them.

NodeJS

NodelS is a server-side technology based on Google’s V8 JavaScript engine (v8
engine). It is a highly scalable system that uses asynchronous calls rather as separate
threads or processes. It is ideal for frequently consulted, but easy to calculate web
applications.

Since most modern kernels are multi-threaded, they can handle multiple oper-
ations running in the background. When one of these operations is completed, the
kernel notifies NodeJS that the appropriate callback can be added to the queue to
be possibly executed. This advantage makes the framework perfect for real-time
systems such as the pricing service. Here are some major advantages of this lan-
guage:

* Node.js offers easy scalability

* Easy to learn

* Known to provide high performance due to its asynchronous nature.
* Perfect for real time systems.

* Support from a great community.

* Its rich NPM ecosystem

54

Chapter 6 : Experimentation

Angular

Angular! is a client-side, open source, TypeScript-based framework, and co-directed
by the “Angular” project team at Google and a community of individuals and com-
panies. Angular is a complete rewrite of AngularJS, a framework built by the same
team.

The technology was used in the existing project, and in terms of time and

efforts, sticking with the same technology was the ore reasonable choice.

Python

Python? is a high-level, interpreted, and versatile dynamic programming language
that focuses on code readability and easy syntax. Python is widely used in large
organizations due to its multiple programming paradigms. It has a complete and a
large standard library which has the automatic management of memory and dynamic
features.

Some python libraries have been a great help to us during the learning and
discovery phase. We can give as an example:
* Matplotlib: it is used to draw curves and histograms.
* Shapely: it is used for manipulating features such as polygons, polylines and
dots.
* Numpy, Pandas: Libraries for data structures, used to manipulate arrays and

matrices.

6.2.2 Data Base Management System
MongoDB

MongoDB? is a document-oriented database management system that can be dis-
tributed across any number of computers and does not require a predefined data
schema, it is also a part of the NoSQL movement. It was used to store all data in

the existing project and we continued to use it while refactoring.

Thttps://fr.wikipedia.org/wiki/Angular
*https://fr.wikipedia.org/wiki/Pythonlangage)
3https://fr.wikipedia.org/wiki/MongoDB

95

Chapter 6 : Experimentation

Redis

Redis, which stands for Remote Dictionary Server, is a key-value data storage system
in memory, open source and fast, to be used as a database, cache, message broker,
and waiting line. Redis is now offering response of less than a millisecond allowing
millions of requests per second for real-time applications.

In our case we use it to store pricing data to be used in prediction system, and

also so we can manipulate the persistence of that data.

6.2.3 IDEs
Visual Studio Code

Visual Studio Code is an extensible code editor developed by Microsoft for Windows,
Linux and macOS. It is based on Electron, a framework used to deploy Node.js
applications for the desktop running on the Blink engine. Although it uses the
Electron framework, the software does not use Atom but uses the same publisher
component (named "Monaco") used in Azure DevOps (formerly known as Visual

Studio Online and Visual Studio Team Services).

PyCharm

It is an IDE used for programming in Python. It allows code analysis and contains
a graphical debugger. We used PyCharm for the development of python scripts and

data processing and even to visualize the data.

6.3 Collaboration environment

After 3 months of our internship at Valley Solutions, there was that sudden disaster
event of Covid-19. The work turned from office presential work, to remote work
from home, and it was at this time when collaborative tools played a huge role in

the success of the project.

o6

Chapter 6 : Experimentation

6.3.1 GitLab

GitLab is a free, git-based forge software that offers collaboration functionalities, a
bug tracking system, continuous integration, and continuous deployment. Developed
by GitLab Inc and created by Dmitriy Zaporozhets and Valery Sizov, the software
is used by several large I'T companies including IBM, Sony, NASA, Alibaba, Oracle,

etc. We used it mostly to work together on the web application features.

6.3.2 Trello

Trello is an online project management tool, launched in September 2011 and in-
spired by Toyota’s Kanban method. It is based on an organization of projects in
boards listing cards, each representing tasks. The cards are assigned to users and
are mobile from one board to another, reflecting their progress.

We used trello board to keep on track all tasks of the implemented project and to

keep it visible with other colleagues as seen in figure (Fig. 6.1).

t) (@ Tableaux Q +@g@

Pricing (Omar) Ouigo | Free A& Visible par les membres d'une équipe @ Rejoindre le tableau @ Butler -+ Afficher le menu

Sprints To Do Doing Testing Done
-— -— —— e
Admin Dashboard Technologies choice heetch price Competitors API Setting the microservice
—— e -— -— w
Time prediction Comparing (2mazen forecast vs) Determining Price (basic)
renting a machine) + Ajouter une autre carte =) f—imuzing won
o — + Ajouter une autre carte -]
Surge Pricing -—
Creating the model
-—— e— [—
Coupan System -— Making a small testing app with
realtime drivers availability and riders google api
Ajout t rt t:
+ Ajouter une autre carte requests ® 17iér. | & 31
-—
Calculating 2 flexible multiplication — }
Adding configuratien file
factor and updating price function
[© 15 1er
+ Ajouter une autre carte
-—

tem tem price

Figure 6.1: Trello board - Ouigo Pricing tasks

6.3.3 Slack

Slack is a proprietary collaborative communication platform (SaaS) as well as project
management software. It works like an Internet Relay chat organized into channels
corresponding to as many discussion topics. The platform also allows us to keep

track of all exchanges.

57

Chapter 6 : Experimentation

Slack was our way of communication, sending files, sharing resources and asking for

help and feedback through the whole time of the internship.

6.4 Deployment environment

The deployment of all the micro-services and web application was the responsibility
of the IT team leader using Amazon Web Services and Kubernetes. Our job was

setting up a ready to deploy solution using Docker technology.

6.4.1 Docker

Docker is a tool that can package an application and its dependencies in an isolated
container, which can be run on any server.

It’s not virtualization, it’s containerization, a lighter form that relies on parts
of the host machine for its operation. This approach increases the flexibility and
portability of running an application, which will be able to run reliably and pre-
dictably on a wide variety of host machines, whether on the local machine, a private

or public cloud, a bare machine, etc.

6.5 Results analysis

For our system, evaluation is based on the quality of results, the precision and the

time of response.

6.5.1 Basic price

Basic pricing is the first feature of Ouigo pricing that was tested, deployed into
production. After being tested, and doing a simulation of a real scenario with all
different cases, including the flaws of other platforms, the results were as requested.

The basic price takes up to 1 second to return a result.

o8

Chapter 6 : Experimentation

6.5.2 Surge price

The zones micro-service was deployed on an Amazon Web Service (AWS) cloud
server. AWS Step Function service allows the training of the model daily, at a
certain time, and despite the fact that the precision is already good, daily training
would make it consistently improving. The surge pricing takes up to 3 seconds to

return a result, but the time can change by enhancing the server’s settings.

6.5.3 Price prediction

For our work we experimented 3 regression algorithms, Multiple Linear Regression
(MLR), Random Forest Regression (RFR) and XGBoost Regression (XGBR). In
the following table 6.1 we present a comparison between the 3 algorithms in terms

of Root Mean Square Error (RMSE) and accuracy.

Algorithm Training Time RMSE Score
Multiple Linear Regression Fast 2750.0010086255475 | 0.07
Random Forest Regression Slow 1252.8439283328469 | 0.80

XGBoost Regression Very Slow 1032.834868843036 | 0.86

Table 6.1: Comparative table between regression algorithms for price prediction
system

After evaluating the 3 approaches, we can see that the MLR training time is so
fast but the accuracy is very low (7%), making it a non fit model to implement. As
for RFR the training takes some time, but the accuracy is good enough for our goal.
XGBR is very slow compared to other approaches, and the accuracy was too much
high (99%) resulting a possible over-fitting, but after executing features extraction
that had positive results on other approaches the score gets low to (86%).

Figures (Fig. 6.2) and (Fig. 6.3) show the learning curves for both approaches.

99

Chapter 6 : Experimentation

== Tramng error
—a— Valdatien ermor

BIODD

GIO0D

MSE

A0

20000

20000 400000 BO0D0D 00000 1000000 1200000
Training set size

Figure 6.2: Learning curves of Random Forest Regressor

== Training ermor
a0 —»— Validation emor

GO0

SOO00

Aacd

MSE

000D

HHCH

10000 - —

200000 a0000 600000 00000 1000000 1200000
Traiming set size

Figure 6.3: Learning curves of XGBoost Regressor

6.6 Conclusion

When we analyse ride fare on XGBoost approach, we can see that the error estimated
at 14% which is a 14dzd loss of the driver or 14dzd loss of the passenger when the

fare is at minimum of 200dzd, and a 70dzd loss when the price is at maximum of

1000dzd.

60

General Conclusion

In our final year project, we have dealt with the issues related to the pricing of a ride
in a Driver On Demand platform by implementing our Ouigo Pricing system. Surge
pricing and price prediction take a big role by adding new features that improve
both the company’s outcome and client’s satisfaction.

The purpose of surge pricing is to augment the price in a certain zone when
drivers availability is low, and ride requests are high, and as a goal, controlling
the displacement of drivers, and enriching empty places. For price prediction, the
purpose is having an exact estimation without the need of Google Maps API, which
is an economy on the company’s investment.

This project allows full control of the pricing system, and providing factors that

help the marketing team to decide on their strategy and their configuration.

61

Bibliography

[1] Dr. Michael Schwind (auth.). Dynamic Pricing and Automated Resource Allo-
cation for Complex Information Services: Reinforcement Learning and Combi-
natorial Auctions. Lecture Notes in Economics and Mathematical Systems 589.

Springer-Verlag Berlin Heidelberg, 1 edition, 2007.

[2] Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures, volume 7. University of California, Irvine

Irvine, 2000.

[3] Kyungmin Brad Lee, Marcus Bellamy, Nitin Joglekar, Shan Jiang, and Christo
Wilson. Surge pricing on a service platform under spatial spillovers: evidence

from uber. Awvailable at SSRN 3261811, 2018.

4] Sam Newman. Building microservices: designing fine-grained systems. " O’'Reill
g gning g Y y

Media, Inc.", 2015.

62

